If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6v^2-3v-2)=(v^2-7v+5)
We move all terms to the left:
(6v^2-3v-2)-((v^2-7v+5))=0
We get rid of parentheses
6v^2-3v-((v^2-7v+5))-2=0
We calculate terms in parentheses: -((v^2-7v+5)), so:We get rid of parentheses
(v^2-7v+5)
We get rid of parentheses
v^2-7v+5
Back to the equation:
-(v^2-7v+5)
6v^2-v^2-3v+7v-5-2=0
We add all the numbers together, and all the variables
5v^2+4v-7=0
a = 5; b = 4; c = -7;
Δ = b2-4ac
Δ = 42-4·5·(-7)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{39}}{2*5}=\frac{-4-2\sqrt{39}}{10} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{39}}{2*5}=\frac{-4+2\sqrt{39}}{10} $
| 5x-(-7)=-13 | | 16x^2-84x-190=0 | | 11t+2t-7t+4t-6t=16 | | z−z+1=z+1 | | 6(3b-4)+(2b-5)=140 | | 6a+3=2a+6a-3 | | 35x+40Y=4565 | | 2x-(6)=-10 | | 16-14m=-264 | | y=1/0^2-9 | | -5293=67n | | 3v-6°=-12 | | -2450=-35x | | -12m=1164 | | 10x+6=56+5x | | m-23=31 | | 4x-10+10=10x-48 | | 3/9x=9 | | 3y+1=7y-17 | | X+10y=110 | | 5x+13,824=9x-17 | | ((6/7)/(12/21))=4/x | | 7x3=30+ | | F(t)=140 | | 2(x+5)=4x-3 | | 2x+8=8-6(x-24) | | 3(x+5)^2=27 | | 1.50+30=3d+12 | | -5/3m=6 | | 1,50+30=3d | | 6x+1/7=3x-251/7 | | -3/4(-x+8)=(6x-10) |